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Motivation

¤ Modern computer architectures based on Relaxed Memory 
Model.

¤ When a program has a Data Race, Sequential Consistency is not 
guaranteed.

¤ Model Checking techniques assume Sequential consistency.  



Data Race

¤ When two memory accesses, 

¤ by different threads,

¤ on the same memory location,

¤ are not ordered,

¤ and at least one is write.



Example

¤ simple java program with two threads data producer and data 
consumer    

data = v; /*produce*/
done = true; /*notify*/

while (!done) {/*spin*/}
assert(data==v);/*consume*/

int data=0;
boolean done=false;

class Simple

data producer data consumer
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Solution

¤ Fundamental property of Java Memory Model 

¤ Programs whose SC executions have no races must 
have only SC executions.

(1)When a program is proved to be race-free, JPF can 
be soundly used to verify further properties such as 
assertion violation and deadlock.

(2)The data race freedom of a program can be 
proved by verifying all SC executions are free of 
data races.



Java RaceFinder (ASE ’09)

¤ Java RaceFinder extends JPF to detect data races in all SC 
executions of a multithreaded program.
¤ happens-before relation is transitive and formed by release-acquire pair

¤ summarizing happens-before relations of events as a summary 
function h

¤ implemented using JPF listener/visitor pattern to instrument each 
event

¤ field factory used to workaround MJI instrumentation

¤ explored additional search spaces introduced by hb-state (same JPF 

state with different summary function h)  

¤ tested various search algorithm including heuristic search/DFS/BFS/
random search 



Java RaceFinder-Eliminator (ASE ’10)

¤ JRF-E extends JRF to advice how to eliminate found races.
¤ using counterexample path and acquiring history
¤ suggest to add lock/change to volatile/move instructions/use 

java.util.concurrent.atomic package...

¤ implemented using JPF listener/visitor to instrument each event
¤ used counterexample path

¤ More optimizations to address state space explosion problem 
such as excluding threadlocal memories and standard libraries/
lazy representation of array/hb-state abstractions, etc.



Motivation (again)

¤ Case studies using concurrent data structure libraries 
¤ hard to find test driver
¤ focusing on testing individual functionality of each method rather 

than testing their interfaces & interference
➡ no easy way to test libraries

¤ Need to have a closed system with specific environments

¤ Suggestions are not applicable when they are to change 
libraries

¤ can we reduce search space by modularization?



Solution (again)

¤ Handle application differently from libraries 

¤ Provide a way to verify libraries against all possible use cases

¤ Exclude already verified libraries from race checking to achieve 
modular verification 



Java RaceFinder-Modular (JPF ’11)

¤ library programmer annotates his design assumptions about the 
preconditions necessary to ensure race freedom

¤ tool will generate a universal environment to prove the 
annotations are sufficient condition to guarantee race freedom

¤ tool will validate the preconditions are sufficient enough to 
guarantee race freedom

¤ uses will use the library in an application

¤ tool will check the preconditions for the library and JRF will check 
races in the codes not from the library
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Library

public int size() { /*requires enqLock, deqLock */ 
    int i=head==tail?0:1;
    for (Node tmp=head.next; tmp != null && tmp != tail ; tmp=tmp.next, ++i);
    return i;
}  

public int deq() throws EmptyException {
    int result;
    deqLock.lock();
    try {
      if (head.next == null) throw new EmptyException();
      result = head.next.value;
      head = head.next;
    } finally { deqLock.unlock(); }
    return result;
  }
  
  public void enq(int x) {
    if (x == EMPTY) throw new NullPointerException();
    enqLock.lock();
    try {
      Node e = new Node(x);
      tail.next = e;
      tail = e;
    } finally { enqLock.unlock(); } 
  }

t

public class UnboundedQueue {
  private static final int EMPTY = Integer.MIN_VALUE; 
  public final ReentrantLock enqLock, deqLock;
  Node head, tail;
  
  public UnboundedQueue() {
    enqLock = new ReentrantLock();
    deqLock = new ReentrantLock();
    head = new Node(EMPTY);
    tail = head;
  }  

  protected class Node {
    public int value;
    volatile public Node next;
    public Node(int x) {
      value = x;
      next = null;
    }
  } 



Annotating methods

a variable x such that x ∈ h(t) means that thread t can read
or write variable x without causing a data race.
In our model of Java execution, we assume that thread main

is the single thread that initiates the program. An execution of
a program P is a finite sequence of actions a0, a1, . . . , an. We
further define a set of static non-volatile variables static(P )
necessary for computing the summary function h. In the
presentation, x represents a location and t represents a thread.
As the h-function definition is inductive, the base case

initializes the function starting with the thread containing main
so it only includes the static variables in the program.

h0 := λz.if z = main then static(P ) else ∅

The inductive step for the hn+1-function depends on the action
an in the program execution.
The way that hn+1 is obtained from hn depends on

the action an and is computed using four auxiliary func-
tions release, acquire, invalidate, and new. The function
release(t, x, h) takes h and yields a new summary function
by updating h(x) to include the value of h(t): h =̂ h[x #→
h(t) ∪ h(x)]. The function is used with actions by thread
t that correspond to the source of a synchronizes-with (sw

→)
edge. The function acquire(t, x, h) takes h and yields a new
function by updating h(t) to include the value of h(x):
h =̂ h[t #→ h(t) ∪ h(x)]. It is used in actions that form
the destination of a synchronizes-with edge. The function
invalidate(t, x, h) removes x from h(t′) for all t′ &= t:
h =̂ λz.if (t = z) then h(z) else h(z)\{x}. It is used
in actions where thread t writes non-volatile x. And finally,
the function new(t,fields , volatiles , h) returns a new summary
function that includes the set fields in h(t) and initializes the
previously undefined values of h for the new volatile variables:

h =̂ λz. if (t = z) then h(t) ∪ fields
else if (z ∈ volatiles) then ∅ else h(z)

The function is used in actions that instantiate new objects.
The summary function hn+1 is inductively constructed from

hn and the next action an according to the rules in Table I.
Data race freedom is checked on an execution at each non-
volatile read action. Given a thread t and a non-volatile read
action on x by t at step i of the execution, if x ∈ hi(t), then
there is no data race on the read. We have shown that if all SC

TABLE I
RULES FOR THE INDUCTIVE DEFINITION OF hn+1

an by thread t hn+1

write a volatile field v release(t, v, hn)
read a volatile field v acquire(t, v, hn)
lock the lock variable lck acquire(t, lck, hn)
unlock the lock variable lck release(t, lck, hn)
start thread t′ release(t, t′, hn)
join thread t′ acquire(t, t′, hn)
t′.isAlive() if (t′.isAlive())

then (acquire(t, t′, hn) else hn

write a non-volatile field x invalidate(t, x, hn)
read a non-volatile field x hn

instantiate an object new(t, fields, volatiles, hn)

executions of a well-formed program have no races according
to the h-function, then all of its legal executions are SC. JRF is
our implementation of data race detection using the h-function
inside of the JPF framework. It employs many optimizations
to efficiently store and update the h-function [4] and is able
to suggest ways to eliminate detected data races [5].

III. MODULAR VERIFICATION
In this work we provide a mechanism to library developers

to specify conditions of usage that guarantee race freedom of
a library module. This guarantee is provided for certain num-
bers of threads and certain numbers of method invocations–
predefined bounds from the developer. There are four main
steps that lead to the publishing of conditions of usage that
guarantee race freedom. Fig. 1 represents them along the
development phase and available information. The white head
arrow represents the corresponding refinement as a result
of a data race and condition violation. A library developer
annotates each method with preconditions that ensure data race
free accesses, then a general execution environment within
the specified bounds is generated to close the system. Next,
a combination of model checking and symbolic execution is
used to check whether the preconditions are violated or not.
When the preconditions are not violated and additional races
are detected in the verification process, then the developer
strengthens the conditions or changes the program. This pro-
cess is repeated until no races are found in the library. Finally,
the library can be used by an application. At this phase, the
library has already been verified for the preconditions and
annotated environments and the role of modular composition
is to ensure these conditions are satisfied by the specific
application. When any violation is discovered at this step,
the only necessary refinement is to modify the usage to meet
annotated conditions. While model checking the application,
the model checker does not need to maintain the h-function
for any internal fields of the verified library. This allows us to
achieve significant savings in time and memory when checking
a race in an application which heavily uses already verified
libraries.

A. Annotating methods
The process begins with the developer specifying the con-

straints on the environment that ensure race freedom in the
library. The developer annotates each method in the library
module with preconditions that encode his/her design deci-
sions regarding the data race free guarantee. The constraints
that can be specified in the preconditions are: (1) a bound
on the number of threads under which it is guaranteed to
be race free, (2) a depth-bound that specifies the number of
times a method can be safely invoked, (3) explicit locking and
synchronization requirements, and (4) h-relation requirements.
The rules for specifying the preconditions are as follows:
class annotation := thread bound
method annotation := depth bound (precondition . . . )
precondition := (condition type . . . )
condition type := field in h | lock(field) | synch(field)

The thread bound and depth bound are integer values. The
class is annotated with a thread bound. The thread bound

¤ Preconditions



Annotated Library

public class UnboundedQueue {
  private static final int EMPTY = Integer.MIN_VALUE; 
  public final ReentrantLock enqLock, deqLock;
  Node head, tail;
  
  public UnboundedQueue() {
    enqLock = new ReentrantLock();
    deqLock = new ReentrantLock();
    head = new Node(EMPTY);
    tail = head;
  }  

  protected class Node {
    public int value;
    volatile public Node next;
    public Node(int x) {
      value = x;
      next = null;
    }
  } 

public int size() { /*requires enqLock, deqLock */ 
    int i=head==tail?0:1;
    for (Node tmp=head.next; tmp != null && tmp != tail ; tmp=tmp.next, ++i);
    return i;
}  

public int deq() throws EmptyException {
    int result;
    deqLock.lock();
    try {
      if (head.next == null) throw new EmptyException();
      result = head.next.value;
      head = head.next;
    } finally { deqLock.unlock(); }
    return result;
  }
  
  public void enq(int x) {
    if (x == EMPTY) throw new NullPointerException();
    enqLock.lock();
    try {
      Node e = new Node(x);
      tail.next = e;
      tail = e;
    } finally { enqLock.unlock(); } 
  }

t

@method (depth_bound=1) // default for constructor 

@method (depth_bound=2) 

@method (depth_bound=2) 
@recondition (lock=”enqLock”, lock=”deqLock”)

@class (threads_bound=3)  

@precondition (h=”CURRENT_THREAD WITH THIS”) 
// default safe publication condition 

@method (depth_bound=2) 

@precondition (h=”CURRENT_THREAD WITH THIS”) 
// default safe publication condition 

@precondition (h=”CURRENT_THREAD WITH THIS”) 
// default safe publication condition 



Universal Environment Generation

¤ use data choice to cover method sequences

¤ use symbolic parameter to cover all possible inputs

¤ generate lock/synchronization specified in preconditions 



Generated universal environment

public class UnboundedQueueVerify {
   public static void main(String[] args)
   {  UnboundedQueueVerify().doTest(); } 
	   
   UnboundedQueue obj;	   
      
  
   void doTest()  {
      for ( int i=0 ; i < 1 ; ++i) 
          new Group1Thread().start();
      for ( int i=0 ; i < 3 ; ++i) 
          new Group2Thread().start();
   }	   

class Group1Thread extends Thread {
      public void run() {
         for ( int i=0 ; i < 1 ; ++i) {
            int c = gov.nasa.jpf.jvm.Verify.getInt(1, 1);
            if ( c == 1 ) obj = new UnboundedQueue();
         }
      }
}

	   
   class Group2Thread extends Thread {
      public void run()
      {  
         while(obj==null);
         for ( int i=0 ; i < 6 ; ++i ) {
            int c = gov.nasa.jpf.jvm.Verify.getInt(1, 3);
            if ( c == 1 ) {
                obj.deqLock.lock(); obj.enqLock.lock();
                try { obj.size(); }
                finally { 
                    obj.enqLock.unlock(); 
                    obj.deqLock.unlock();
                }
            }
            else if ( c == 2 ) { 
                @Symbolic("true")
                int sym1=0;	
                obj.enq(sym1);
            }
            else if ( c == 3 ) { 
                try { obj.deq(); } 
                catch (EmptyException e) {}
            }
         }
      }
   }
}



Verification of the race freedom of the module

¤ JRF will detect any remaining races

¤ ignore executions where constraints violated

¤ adjust summary function h when h precondition is violated



Verification of the application

¤ JRF will detect races in application code

¤ JRF-modular will detect precondition and constraint violation



Example Application

public class FairMessage {
     static final int PER_THREAD=2, NUM_THREAD=2;
	 UnboundedQueue queue = new UnboundedQueue();
     DisBarrier bar = new UnboundedQueue();

	 public static void main(String[] args) {  
         new FairMessage().run(); 
      } 	
	 private void run() 
     {
	    for (int i=0 ; i < NUM_THREAD ; ++i) {
               new EnqThread(i).start();	 	
               new DeqThread().start();
         }
         System.out.println(“queue size=”+quene.size());
     }	 	  

    class EnqThread extends Thread {
	     int  id;
	     EnqThread(int i) { id = i; }
	     public void run() {
	       for (int i = 0; i < PER_THREAD; i++) {
	         queue.enq(id + i);
	       }
	     }
    }
    class DeqThread extends Thread {
	     public void run() {
	     	   for (int i = 0; i < PER_THREAD; i++) {
       	      try { queue.deq(); bar.await(); }
	     	      catch (EmptyException ex) {}
	         }
	     }
     }



JRF result for FairMessage

public class UnboundedQueueVerify {
UnboundedQueue obj;
@Symbolic("true")
int sym0;

public static void main(String[] args) {
new UnboundedQueueVerify().doTest();

}
void doTest() {

for (int i=0 ; i < 1 ; ++i) new Group1Thread().start();
for (int i=0 ; i < 3 ; ++i) new Group2Thread().start();

}
class Group1Thread extends Thread {

public void run() {
for ( int i=0 ; i < 1 ; ++i) {

int c = gov.nasa.jpf.jvm.Verify.getInt(1,1);
if ( c == 1 ) obj = new UnboundedQueue();

}
}

}
class Group2Thread extends Thread {

public void run() {
for ( int i=0 ; i < 6 ; ++i) {

while ( obj==null);
int c = gov.nasa.jpf.jvm.Verify.getInt(1,3);
if ( c == 1 ) {

obj.deqLock.lock();
obj.enqLock.lock();
try { obj.size(); }
finally{

obj.enqLock.unlock();
obj.deqLock.unlock();

}
}
else if ( c == 2 ) {obj.enq(sym0);}
else if ( c == 3 ) {

try{obj.deq();} catch (EmptyException e) {}
}

}
}

}
}

Fig. 5. Generated universal environment for UnboundedQueue

public class FairMessage {
UnboundedQueue queue = new UnboundedQueue();
DisBarrier bar = new DisBarrier(NUM_THREAD);
static final int NUM_THREAD=2, PER_THREAD=2;

public static void main(String[] args) {
(new FairMessage()).run();

}
private void run() {

for ( int i=0 ; i < NUM_THREAD ; ++i)
{ new EnqThread(i).start();

new DeqThread().start();
}
System.out.println("queue size = "+queue.size());

}
class EnqThread extends Thread {

int id;
EnqThread(int i) { id = i; }
public void run() {

for (int i = 0; i < PER_THREAD; i++) queue.enq(id+i);
}

}
class DeqThread extends Thread {

public void run() {
for (int i = 0; i < PER_THREAD; i++)

try {
queue.deq();
bar.await();

} catch (EmptyException ex) {}
}

}
}

Fig. 6. FairMessage uses UnboundedQueue and DisBarrier

================================================
JRF results
================================================ data race #1
edu.ufl.cise.jrf.util.HBDataRaceException

at THREAD (java.lang.Thread@ from null)
to MEMORY (jrfm.UnboundedQueue@.tail

from "volatile UnboundedQueue queue = new UnboundedQueue();"
at jrfm/FairMessage.java:10 in (<init>))

in INSTRUCTION (getfield)
of SOURCE ("for (Node tmp=head.next; tmp!=null &&

tmp!=tail ; tmp=tmp.next, ++i);"
at jrfm/UnboundedQueue.java:72)

. . .
================================================
JRF-E results
________________________________________________ analyze counter example
data race source statement : "putfield" at jrfm/UnboundedQueue.java:58 :

"tail = e;"
by thread 1

data race manifest statement : "getfield" at jrfm/UnboundedQueue.java:72:
"for (Node tmp=head.next; tmp!=null &&

tmp!=tail ; tmp=tmp.next, ++i);"
by thread 0

Change the field "jrfm.UnboundedQueue@.tail
from "volatile UnboundedQueue queue = new UnboundedQueue();"
at jrfm/FairMessage.java:10 in (<init>)" to volatile.

Lock "java.util.concurrent.locks.ReentrantLock@
from "enqLock = new ReentrantLock();"
at jrfm/UnboundedQueue.java:25 in (<init>)"
before accessing (jrfm.UnboundedQueue@.tail)

. . .

Fig. 7. Race in FairMessage detected by JRF and suggestions provided
by JRF-E

================================================
JRFM-ComposeModule results
================================================ precondition violation #0
in "jrfm.UnboundedQueue.size()"

the lock precondition of method (size) "enqLock, deqLock" is violated.
at "System.out.println("queue size = "+queue.size());"
in "jrfm.FairMessage.run(FairMessage.java:23)"

================================================ precondition violation #1
in "jrfm.UnboundedQueue.size()"

the lock precondition of method (size) "enqLock, deqLock" is violated.
at "assert (queue.size() == 0);"
in "jrfm.FairMessage.run(FairMessage.java:17)"

. . .

Fig. 8. Precondition violations in FairMessage detected by JRF modular
extension

The important difference in the results of UnboundedQueue
example is the target of verification. JRF and its other ex-
tensions are focusing on the verification of the whole target
application, on the other hand, the modular method presented
in this paper partitions the target into trusted libraries which
had already verified for the predefined consistent usage pattern
and untrusted modules which should meet those constraints.
The data race in the application should be eliminated by mod-
ifying the untrusted codes which violates the preconditions of
immutable libraries.
The rest of this section will present the experimental results

using the JRF modular extension for the selected set of test
cases used in JRF[4]. Note that JRF is one step verification for
individual application context and modular approach consist of
a library verification per each library and a constraint checking
per individual application contexts. We can assume that a
library is verified once at the time of its development phase
and referenced multiple times in different application contexts
so that the one-time library verification overhead is acceptable.
This is discussed further in Fig. 9.

Table II summarizes the resources consumed for the
library verification. LOC specifies the lines of code in the
library and LOP are the precondition annotations in lines (one
precondition per line). The time and memory expended in the
environment generation (env. generation) and the resources



JRF-E result for FairMessage
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The important difference in the results of UnboundedQueue
example is the target of verification. JRF and its other ex-
tensions are focusing on the verification of the whole target
application, on the other hand, the modular method presented
in this paper partitions the target into trusted libraries which
had already verified for the predefined consistent usage pattern
and untrusted modules which should meet those constraints.
The data race in the application should be eliminated by mod-
ifying the untrusted codes which violates the preconditions of
immutable libraries.
The rest of this section will present the experimental results

using the JRF modular extension for the selected set of test
cases used in JRF[4]. Note that JRF is one step verification for
individual application context and modular approach consist of
a library verification per each library and a constraint checking
per individual application contexts. We can assume that a
library is verified once at the time of its development phase
and referenced multiple times in different application contexts
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Table II summarizes the resources consumed for the
library verification. LOC specifies the lines of code in the
library and LOP are the precondition annotations in lines (one
precondition per line). The time and memory expended in the
environment generation (env. generation) and the resources



JRF-Modular result for FairMessage

public class UnboundedQueueVerify {
UnboundedQueue obj;
@Symbolic("true")
int sym0;

public static void main(String[] args) {
new UnboundedQueueVerify().doTest();

}
void doTest() {

for (int i=0 ; i < 1 ; ++i) new Group1Thread().start();
for (int i=0 ; i < 3 ; ++i) new Group2Thread().start();

}
class Group1Thread extends Thread {

public void run() {
for ( int i=0 ; i < 1 ; ++i) {

int c = gov.nasa.jpf.jvm.Verify.getInt(1,1);
if ( c == 1 ) obj = new UnboundedQueue();

}
}

}
class Group2Thread extends Thread {

public void run() {
for ( int i=0 ; i < 6 ; ++i) {

while ( obj==null);
int c = gov.nasa.jpf.jvm.Verify.getInt(1,3);
if ( c == 1 ) {

obj.deqLock.lock();
obj.enqLock.lock();
try { obj.size(); }
finally{

obj.enqLock.unlock();
obj.deqLock.unlock();

}
}
else if ( c == 2 ) {obj.enq(sym0);}
else if ( c == 3 ) {

try{obj.deq();} catch (EmptyException e) {}
}

}
}

}
}

Fig. 5. Generated universal environment for UnboundedQueue

public class FairMessage {
UnboundedQueue queue = new UnboundedQueue();
DisBarrier bar = new DisBarrier(NUM_THREAD);
static final int NUM_THREAD=2, PER_THREAD=2;

public static void main(String[] args) {
(new FairMessage()).run();

}
private void run() {

for ( int i=0 ; i < NUM_THREAD ; ++i)
{ new EnqThread(i).start();

new DeqThread().start();
}
System.out.println("queue size = "+queue.size());

}
class EnqThread extends Thread {

int id;
EnqThread(int i) { id = i; }
public void run() {

for (int i = 0; i < PER_THREAD; i++) queue.enq(id+i);
}

}
class DeqThread extends Thread {

public void run() {
for (int i = 0; i < PER_THREAD; i++)

try {
queue.deq();
bar.await();

} catch (EmptyException ex) {}
}

}
}

Fig. 6. FairMessage uses UnboundedQueue and DisBarrier

================================================
JRF results
================================================ data race #1
edu.ufl.cise.jrf.util.HBDataRaceException

at THREAD (java.lang.Thread@ from null)
to MEMORY (jrfm.UnboundedQueue@.tail

from "volatile UnboundedQueue queue = new UnboundedQueue();"
at jrfm/FairMessage.java:10 in (<init>))

in INSTRUCTION (getfield)
of SOURCE ("for (Node tmp=head.next; tmp!=null &&

tmp!=tail ; tmp=tmp.next, ++i);"
at jrfm/UnboundedQueue.java:72)

. . .
================================================
JRF-E results
________________________________________________ analyze counter example
data race source statement : "putfield" at jrfm/UnboundedQueue.java:58 :

"tail = e;"
by thread 1

data race manifest statement : "getfield" at jrfm/UnboundedQueue.java:72:
"for (Node tmp=head.next; tmp!=null &&

tmp!=tail ; tmp=tmp.next, ++i);"
by thread 0

Change the field "jrfm.UnboundedQueue@.tail
from "volatile UnboundedQueue queue = new UnboundedQueue();"
at jrfm/FairMessage.java:10 in (<init>)" to volatile.

Lock "java.util.concurrent.locks.ReentrantLock@
from "enqLock = new ReentrantLock();"
at jrfm/UnboundedQueue.java:25 in (<init>)"
before accessing (jrfm.UnboundedQueue@.tail)

. . .

Fig. 7. Race in FairMessage detected by JRF and suggestions provided
by JRF-E

================================================
JRFM-ComposeModule results
================================================ precondition violation #0
in "jrfm.UnboundedQueue.size()"

the lock precondition of method (size) "enqLock, deqLock" is violated.
at "System.out.println("queue size = "+queue.size());"
in "jrfm.FairMessage.run(FairMessage.java:23)"

================================================ precondition violation #1
in "jrfm.UnboundedQueue.size()"

the lock precondition of method (size) "enqLock, deqLock" is violated.
at "assert (queue.size() == 0);"
in "jrfm.FairMessage.run(FairMessage.java:17)"

. . .

Fig. 8. Precondition violations in FairMessage detected by JRF modular
extension

The important difference in the results of UnboundedQueue
example is the target of verification. JRF and its other ex-
tensions are focusing on the verification of the whole target
application, on the other hand, the modular method presented
in this paper partitions the target into trusted libraries which
had already verified for the predefined consistent usage pattern
and untrusted modules which should meet those constraints.
The data race in the application should be eliminated by mod-
ifying the untrusted codes which violates the preconditions of
immutable libraries.
The rest of this section will present the experimental results

using the JRF modular extension for the selected set of test
cases used in JRF[4]. Note that JRF is one step verification for
individual application context and modular approach consist of
a library verification per each library and a constraint checking
per individual application contexts. We can assume that a
library is verified once at the time of its development phase
and referenced multiple times in different application contexts
so that the one-time library verification overhead is acceptable.
This is discussed further in Fig. 9.

Table II summarizes the resources consumed for the
library verification. LOC specifies the lines of code in the
library and LOP are the precondition annotations in lines (one
precondition per line). The time and memory expended in the
environment generation (env. generation) and the resources
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(a) Comparison of times spent in JRF for the application given in Table III;
JRF execution time without this modular extension, the sum of verification and
composition time for the libraries given in Table II and application contexts in
Table III, and average times when we assume the library in Table II is used
by 100 different application contexts with average composition phase time as
Table III are compared.
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(b) Max memory required by JRF and modular verification; Note that modular
verification data represents the maximum of the three memory requirements in
environment generation, precondition verification, and modular composition.

Fig. 9. Comparison of JRF and modular extension resource requirements

is the most space consuming phase. Though, memory is not
the hotspot as long as the library is verifiable within the JVM
heap boundary and the modularization would be more efficient
when an application utilizes multiple instances of libraries.

VII. RELATED WORK

Race detection tools based on static analysis techniques
typically sacrifice completeness, in the sense that they can
only deal with a particular set of programming idioms, and
thus disallow legal data-race free programs. Some tools delib-
erately sacrifice soundness for scalability, failing to identify
certain data races. For example, Chord [16], which can handle
lexically-scoped lock-based synchronization, fork/join syn-
chronization, and wait/notify, starts by constructing a superset
of possible conflicting operations, then filters this set using
a sequence of analyses, and reports a possible data race for
all remaining pairs. Another example is the rcc checker [17]
as recently resurrected and extended for the Mobius project
[18]. This tool uses a type theory base approach (which
requires annotations by the users) to ensure that locking is
done correctly. In its most recent incarnation, it also recognizes
that volatile variables do not need to be protected by locks to
avoid data races. However, in whatever form, the tool cannot
deal with happens-before edges obtained via transitivity and
generates false positives as a result.
Tools that perform dynamic race detection look for races in

particular executions of the program. The disadvantage is that
dynamic tools only detect problems in the test cases that are
actually examined. These are typically based on maintaining
vector clocks or the lock-set algorithm with checks to see
if every shared variable access is consistently locked. Eraser
[19] is an influential example of a lock-set based detector. The
tool most closely related to JRF is Goldilocks[20]. Goldilocks
is a dynamic analysis tool using an algorithm based on a

relation that is very similar to the inverse of h. In other
words, the Goldilocks algorithm maintains a function for each
variable that indicates which threads can access the variable.
As with all tools performing dynamic analysis, the required
instrumentation of the program may change its behavior and
the tool is limited to analyzing paths that happen to be tested.
Race Free Java is a type system for a simplified version

of Java that statically prevents races by allowing the type
system to ensure that each object is consistently locked, is
immutable, or is local to a single thread. It cannot deal with
other widely used concurrent programming idioms such as
those using volatile variables, the java.util.concurrent.atomic
classes, barriers, detecting termination, etc [21]. Parameter-
ized RaceFreeJava extends RaceFreeJava to information about
object ownership [22], [23].
Bounded model checking has been used for the last several

years and considers a finite prefix of a path with length k
by unrolling the finite state machine for k steps [24]. The
verification of the module within the universal environment is
an example of bounded model checking.
Bandera automatically generates an environment from en-

vironment assumptions provided as LTL formulas or regular
expressions [25]. The generated environment is an abstraction
that approximates the actual environment whereas in this work
the universal environment is general. The Calvin checker [26]
is a modular approach using assume-guarantee model check-
ing. It uses user specifications about environment assumptions
to constrain thread interactions based on locking. There are
no contraints applied on thread interactions in our approach.
Environments for components automatically using side-effects
and points-to analyses in modular model checking [27]. An
interface grammar is used to generate component stubs to
use in compositional model checking [28]. Precise component
interfaces are generated using learning techniques during state
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(a) Comparison of times spent in JRF for the application given in Table III;
JRF execution time without this modular extension, the sum of verification and
composition time for the libraries given in Table II and application contexts in
Table III, and average times when we assume the library in Table II is used
by 100 different application contexts with average composition phase time as
Table III are compared.
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(b) Max memory required by JRF and modular verification; Note that modular
verification data represents the maximum of the three memory requirements in
environment generation, precondition verification, and modular composition.

Fig. 9. Comparison of JRF and modular extension resource requirements

is the most space consuming phase. Though, memory is not
the hotspot as long as the library is verifiable within the JVM
heap boundary and the modularization would be more efficient
when an application utilizes multiple instances of libraries.

VII. RELATED WORK

Race detection tools based on static analysis techniques
typically sacrifice completeness, in the sense that they can
only deal with a particular set of programming idioms, and
thus disallow legal data-race free programs. Some tools delib-
erately sacrifice soundness for scalability, failing to identify
certain data races. For example, Chord [16], which can handle
lexically-scoped lock-based synchronization, fork/join syn-
chronization, and wait/notify, starts by constructing a superset
of possible conflicting operations, then filters this set using
a sequence of analyses, and reports a possible data race for
all remaining pairs. Another example is the rcc checker [17]
as recently resurrected and extended for the Mobius project
[18]. This tool uses a type theory base approach (which
requires annotations by the users) to ensure that locking is
done correctly. In its most recent incarnation, it also recognizes
that volatile variables do not need to be protected by locks to
avoid data races. However, in whatever form, the tool cannot
deal with happens-before edges obtained via transitivity and
generates false positives as a result.
Tools that perform dynamic race detection look for races in

particular executions of the program. The disadvantage is that
dynamic tools only detect problems in the test cases that are
actually examined. These are typically based on maintaining
vector clocks or the lock-set algorithm with checks to see
if every shared variable access is consistently locked. Eraser
[19] is an influential example of a lock-set based detector. The
tool most closely related to JRF is Goldilocks[20]. Goldilocks
is a dynamic analysis tool using an algorithm based on a

relation that is very similar to the inverse of h. In other
words, the Goldilocks algorithm maintains a function for each
variable that indicates which threads can access the variable.
As with all tools performing dynamic analysis, the required
instrumentation of the program may change its behavior and
the tool is limited to analyzing paths that happen to be tested.
Race Free Java is a type system for a simplified version

of Java that statically prevents races by allowing the type
system to ensure that each object is consistently locked, is
immutable, or is local to a single thread. It cannot deal with
other widely used concurrent programming idioms such as
those using volatile variables, the java.util.concurrent.atomic
classes, barriers, detecting termination, etc [21]. Parameter-
ized RaceFreeJava extends RaceFreeJava to information about
object ownership [22], [23].
Bounded model checking has been used for the last several

years and considers a finite prefix of a path with length k
by unrolling the finite state machine for k steps [24]. The
verification of the module within the universal environment is
an example of bounded model checking.
Bandera automatically generates an environment from en-

vironment assumptions provided as LTL formulas or regular
expressions [25]. The generated environment is an abstraction
that approximates the actual environment whereas in this work
the universal environment is general. The Calvin checker [26]
is a modular approach using assume-guarantee model check-
ing. It uses user specifications about environment assumptions
to constrain thread interactions based on locking. There are
no contraints applied on thread interactions in our approach.
Environments for components automatically using side-effects
and points-to analyses in modular model checking [27]. An
interface grammar is used to generate component stubs to
use in compositional model checking [28]. Precise component
interfaces are generated using learning techniques during state



Conclusion

¤ Preconditions are a great way to share the library developer’s 
design choices with its users.

¤ Universal environment benefits the library developer to debug 
concurrency issues.

¤ Given that a library is verified once and the result can be applied 
to many times, JRF-modular extension outperforms JRF and JRF-E 
in spatial and temporal performance.

¤ Moreover, this advice in more appropriate in that it only suggests 
to fix application rather than the library code.

 



Future Work

¤ Extend to include race-free invariant

¤ How to overcome the limitation of constraints

¤ How to address the space explosion problem with symbolic 
parameters and data choices

 



Question?

Thank you


